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Abstmct

Performance of the second order digital Data-Aided Loop (DAL) is evaluated. The

loop tracking phase jitter is determined using the current available analog results. To

utilize the analog results, both Impulse Invariant Transformation (IIT”) and Linear

Interpolation Transformation (LIT) techniques are usec! in the approximation of the

digital loop filter. The analytical results obtained from these transformation methods

will be compared with the computer simulation results. The comparison shows that

the analytical results obtained by LIT method are in good agreement with computer

simulation results and hence, it can be used to preclict  the performance of the digital

DAL,

In addition, the paper will also investigate the impact of the tracking phase jitter on

the Bit Error Rate (FJER) performance of the second order digital DA1., and the results

are then compared with the commonly used Costas loops, namely, Costas  loop with

matched filter and clock feed back in the arm filter and Costas loop with second order

Butterworth  filter in the arm filter. The analytical results demonstrate the superiority

performance of the digital DAL,.



1. Introduction

In the past, the analog Data-Aided Loop (DAL) has been proposed for space

applications [1, 2]. The DAL can be

carrier communication systems. For

employed by both suppressed carrier or residual

space applications, the residual carrier systems

usually use the subcarrier to separate the data from the residual carrier [3]. Basically,

the DAL uses the power in the composite received signal sidebands to enhance the

Signal-to-Noise Ratio (SNR) in the bandwidth of the carrier (or subcarrier) tracking.

The composite received signal  used in the DAL can consist of the carrier and data, or

carrier and data modulated subcarrier for suppresseci or residual carrier system,

respectively [2]. Furthermore, for residual carrier systems, the DAL can also be used

for subcarrier tracking where the composite received signal is subcarrier and data [3,

Chapters 5-6].

Because of the advance in digital signal processing technology, the DAL can be

easily implemented in a single Digital Signal Processing (DSP) chip. This has

motivated the use of the digital DAL. for space api>lications  where the subcarrier

tracking is required to be done with a great accuracy. Figure 1 shows a simplified

block diagram of the digital DAL. The digital loop filter, F(z), shown in this figure is

of the second order type, hence the name second order digital DAL.

The performance of the first and second order analog DAL has been analyzed

thoroughly by Simon and Springett [2]. However, the results for the second order
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loop are only applicable to the second order

use the current available results provided in

the second order digital DAL, and assesses

analog loop filter, This paper attempts to

[2] to derive the tracking phase jitter for

the impact of this phase jitter on the Bit

Error Rate (BER) performance. The results of the phase jitter obtained by the

computer simulation for the digital DAL will also be presented and compared with the

theoretical results. The computer

ing Worksystem (SPW) software

performance for systems using

Costas loops.

simulation has been built using the Signal Process-

of Corndisco Systems Inc. Furthermore, the BER

DAL will be compared against those employing

The paper is organized as follows: it begins with with Section 2 where a

description of the digital DAL and current available results for the second order analog

DAL, To utilize the analog results, Ihe equivalent digital loop filter in the analog

domain (S-domain) is derived. 130th Impulse Invariant Transformation (IIT) and linear

interpolation transformation (1. IT) methods are used in the

second order digital filter in jhe S-domain. A mathematical

phase jitter of the second order digital DAL is determined

filter in the S-domain. Next, in Section 4, the impact of the

approximation of the

model for the tracking

using the approximated

tracking phase jitter on

the bit error rate performance of the digital DAL and Costas  loops is investigated. “

Costas  loops with matched filter and second order 13utterworth filter in the arm filter

are considered here. Numerical results are presented in Section 5 using the actual de-

sign parameters for deep space missions, and the results between the digital DAL and

Costas loops are compared against each other. Finally, the main conclusion is

shown in Section 6.



2. Description of the Digital DAL

The input signal to the loop can be considered at baseband. This baseband signal

is just the phase of the carrier at the instant of

DAL block diagram shown in Figure 1 is just

diagram for processing the received phase. The

the error sample. Thus, the digital

the phase diagram, i.e., the block

sample-and-hold is triggered by the

output of the Digital Controlled Oscillator (DCO). The loop is trying to sample at the

zero crossing of the input sinusoid. If the error in detecting the zero crossing is ~ and

the peak amplitude is A, the data modulation is then the output of the sanlple-and-

hold which is Ad(t) sin($), where d(t) is the

Converter (ADC) convert this output into a

then accumulated by the error accumulator.

incomming data stream over N samples per

NRZ binary data. The Analog-to-Digital

digital data stream and this data stream is

The error accumulator is accumulated the

bit. N is the data rate dependent number

saniples.  Thus, the output of the error accumulator is the sum over one bit period.

This output is then multiplied by the estimate of the incoming data stream. The data-

aided loop uses the data estimate to improve the tracking performance. In order to

keep the loop performance the same for all data rate, the output of the multiplier is

scaled by a data rate dependent constant. The scaled error signal is then smoothed by

the second order filter.

The DCO issues the zero

The error signal is usecl to control the output of the DCO.

crossing sample time command after counting a certain nun~-

ber of clock cycles based on the

received from the loop filter, the

tard the sampling phase,

incoming frequency. When a correction count is

DCO adjusts its count accordingly, to advance or re-
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The objective of this paper is to derive the tracking phase jitter of the second order

digital DAL described in Figure 1 and to assess the impact of this phase jitter on the

Bit error Rate (BER) performance. Based on the available results derived for analog

DAL, the following section will derive the tracking phase jitter of the second order

digital DAL.

3. Tmcking  Phase Jitkw for the Second Older  Digital DAL

3.1. Cummt  Results for the Second  Oder Analog DAL

A simplified block diagram for the analog DAL is shown in Figure 2. This loop

has been analyzed in [1-2]. For the second order DA1., the loop filter F(s) is given

by

1 +ST2
F(s) ==

1

where z, and ~z are the time constants of the second

(1)

order loop filter. When the Loop

Signal-to-Noise Ratio (LSNR) is large and the bit SNR is greater

tracking phase jitter less than 15°, the variance of the tracking

shown to have the following form [2]

0;

1 -Fl
1 +—

r

(+%

than 4 dB with the

phase jitter can be

(2)

where FI is defined as the time constant zz-to-~l  ratio, i.e,



(3)

and the parameter r is given by

r=~DK~2F1etfl&), (4)

theparameters  P~ and R, denote the total received signal power and Bit SNR (BSNR),

respectively, and K in Eq. (4) denotes the loop gain,

the parameter 8 in Eq, (5) indicates the inverse of the

and bit period Tb, i.e.,

and, finally, the parameter p in Eq. (3) is given by

product

Note that Eq. (2) represents the linear approximation of the

the second order loop at high bit SNR and small phase jitter

(5)

of loop bandwidth (BJ

(6)

(7)

tracking phase jitter for

error. For large r, the

phase jitter described by Eq. (2) will approach (l/p), which is the phase jitter for the

linear first order loop. Thus, for large r, the parameter p becomes the loop SNR,

In t}lis paper, one is interested in a digital DA

digital loop filter F(z) of the following type:

, (see Figure 1 ) with a second order



A2
F(Z)=A, +—

.2-1
(8)

where the Al and Az are the coefficients of the digital filter. For typical deep space

missions, e.g. Mars Observer and Cassini,  the coefficients are given by Al = 0.25 and

Az = 0.03125. In order to use the analog results presented above, one must find the

equivalent loop filter in the S-domain. The following section attempts to determine

this equivalent loop filter.

3,2. I)c(cnnining  the Equivalent Loop Filter in the S- Donmin

From Eq. (9), the loop filter F(z) in the discrete domain can be rewritten as

F(z) =Kf

where

1 -y~z

1 -y,z 1
A

yl=l,  y2=~, Kf=A1-A2
‘ f

(9)

( lo )

The goal is to find whether there exists appropriate values for ~1 and Zj in Eq. (1)

that can be used to approximate the digital loop filter in Eq. (9) so that the analog

results presented in Section.  3.1 can be applied, Using the Linear Interpolation

Transformation (LIT) techniques [4], one can replace 1/s by

[1(7j!2) $

into Eq. (1 ) to get an approximated digital loop filter for F(z), FAP(z). Let al and a2

be defined as



(12)

2T2
a2. —

T
(13)

then the approximated digital loop filter FAP(z) of F(z) using LIT transformation

technique can be written in terms of al and az as

( a2-1
F&) = —

al-l
(ka2+l

l-—

“)

az-l

.()

al+l
l-—

al-l

(14)

Note that T is the nominal sampling period. For typical deep space missions, the

nominal sampling period is (8 xl 03)-’ sec.

Next, one would want to map Eq. (14) into Eq (9). By equating the coefficients

between Eqs. (14) and (9), one obtains the appropriate time constants ~1 and q for the

corresponding analog filter that represents F(z) in the s-domain, namely,

[11 1
T,=7

K~y2-1) ‘z

11y2+l
~2. —

2 y2-1

(15)

(16)

Since one wants the approximated second order digital loop filter FAP(z) to be the

same as F(z) described in Eq. (9), the values ~, and ~z calculated from Eqs. (15) and

(16) must be selected in such a way that the following condition is satisfied



(17)

As an example, for typical deep space missions, one obtains:

rl=4,0585x10-3seo,  Z2=9.3662587X10  -4SCC (18)

Using the calculated values  for~l  and ~z in Eq. (18), one wishes to verify the condition

in Eq, (17). By substituting these values into Eq. (17) one gets y, = 1.03, which is

approximately equal to 1. Therefore, for deep space applications, using the time

constants found in Eq. (1 8), one can approximate the discrete loop filter F(z) in Eq. (8)

by Eq. (1) in the s-domain, Thus, using the I.IT method, the approximated analog

loop filter for the digital filter described by Eq. (8) is found to be:

F(s) =
1 +(9.3662587x10  “)S (19)

1 +(4,05850xI0  ‘3)S

Since one wishes to find an approximated analog loop filter that has a form expressed

by Eq. (1) (so that the results presented in Section 3.1 are applicable), one must deter-

mine whether or not the 1.11 method will provide a “good approximation” of the

digital loop filter in the analog domain. It will be shown later that the tracking phase

jitter calculated using the loop filter approximated by LIT method is in good

agreement with the results obtained by

completeness, one needs to find the actual

computer simulation. However, for

representation of the analog loop filter

described in Eq. (1) in the z-domain. After getting the actual representation of Eq. (1)

in the s-domain, one can then approximate the digital loop filter F(z) described in Eq.

(9).



In order to preserve the transient response of the analog loop filter F(s) in the dis-

crete domain, the actual representation of Eq. (1) in the z-domain can be derived by

using IIT method, This is derived as follows. First, the impulse response f(t) of the

analog loop filter is found by taking

desired impulse response f(n) for the

the inverse Laplace transform of F(s). The

digital loop filter then can be found by sample

F(t) at each sampling interval T, i.e., f(n) = f(t = nT).

the discrete domain is found by taking the Z-transform

-az  - 1

w)=”ao-~le z1 _z-le -a2

where the parameters cxO, cq and ctz are given by

The actual loop filter, FAC(Z), in

of f(n), namely [5],

– --+, (X1=+ (X2=+Cxo- :

(20)

.
(21)

“1 q 1“1 L1

To approximate the digital loop filter expressed by Eq, (9) in the analog  domain

one rewrites 13q. (9) as follows

,{ 1
-1

F(z) ‘K ‘ 2 - Z
l-z-l

(22)

where K~ and yz are given by Eq. (1 O). By comparing the coefficients of Eqs. (20) and

(22), one can determine the time constants rlAC and ~~*C for the corresponding analog

loop filter, FAC(S), that represents an approximation using IIT transformation for the

digital loop filter ”described  by Eq. (9). Con~parin&  the coefficients between Eqs. (20)

and (22), one gets



(23)

and

T--——.—
~ L4c  -.e -1

(24)

The solutions to Eqs. (23) and (24) should satisfy the constraint

-T— .
h4ce ~Mc–l-. (25)

~ IAc

Note that Eq. (20) is indeecl a good approximation of 13q. (22) when the constraint

described by Eq, (25) is satisfied. If one picks

~ =0.0009
T lAc

(26)

then Eq. (24) becomes

T-—

‘“’ =’0.999 =1
(27)

e

From Eqs. (23) and (26), one can solve for ~a~, in ternls of the sanlpling  tin~e T and YZ

( 1

T—– -I
‘2 0.0009Tut=

( )

-r
1- T

0.0009

(2s)

where the time constants ~,AC and ~2AC selected by Eqs. (26) and (28) should satisfy the

constraint described in Eq. (25). If the selected time constants do not satisfy Eq. (25),

one has to reselect a value for the ratio (T/~l AJ and repeat the procedure again. For



instance, the calculated time constants for typical deep space applications are, from

Eqs. (26) and (28),

T1~C=0.13889  S(X), TMC=0.13569  SW. (29)

Using these time constants one needs to verify the constraint dictated by Eq. (25),

Substituting Eq. (29) into Eq. (25) one gets

%ACe2C.0.9778Zl

T lAc

(30)

Hence,  the calculated time constants expressed in Eq. (29) can be used to represent

the loop filter in the analog domain. ~’herefore,  for the typical digital DAL employed

by deep space spacecraft, the approximated analog loop filter for the digital filter

described by Eq. (8) using the 111’ method is found to be:

‘AC(Z)  = ~~~ 3569)s1+(0,13889)s
(31)

4.  1313R l’eli-ollnrmcc

In this section one will assume that the bit tracking is perfect in the bit

synchronizer. When the two-sided loop bandwidth of the digital DAL (or the analog

Costas  loop)  is small relative to the in coming data rate, then the phase error $ can be

considered to be constant for many bit periods. Under these conditions, the

conditional error probability is given by [2]



(32)

The average error probability is then obtained by averaging Eq. (32) over the

probability density function (pdf,) P($) of the phase error [2]

I@

JPA,= Pe(@P(@)d$
- nP

(33)

Using Eq. (33), one can derive the average Bit Error Rate (BER) performance for

the digital DAL, the Costas loop with matched filter and clock feed back in the arm

filter, and the Costas loop with second order Butterworth filter in the arm filter.

4.1 Digital DAL Imop

For digital DAL operates at high bit SNR (R, > 4 d13) and small phase error ($ <

dl 2), using Reference [2], the pdf for the phase error can be shown to have the

following form

where

1~._ (35)
0:

and 0$2 is given by Eq. (2). By substituting Eq. (34) into Eq. (33) and evaluating the

integralione will obtain the average BER performance for the digital DAL loop.



4.2 Cos(,as loop with Matched Filter and Clock  Fc.ed Back in (he Ann Filter

For this particular case, the passive arm filters of the Costas loop are replaced by

the matched filter (integrate-and-dump type) with the clock feed back, When the

transmitted data format is of NRZ type, the variance of the tracking phase error in the

loop is found to be [3, Chapter 3]

1& = - (36)
p&L

where pc and S1, are the loop SNR and the loop squaring loss, respectively. They are

given by

Pc’R.~

SL= 1
1 +.-!-

2R~

The pdf  for the tracking phase error of the Costas loop is

(37)

(38)

(39)

Again, the average BER performance for this loop can be obtainecl by substituting

Eq. (39) into Eq. (33) and evaluating the integral.



4.3 Costas  loop with the Second Older  Butte]wolth Filter in the Am Filter

For this loop, the passive arm filters are second order 13utterworth  filters with II

denotes the single-sided noise bandwidth of the filter. The pdf and the variance for

the tracking phase error of this loop has the same forms as that of Eqs. (39) and (36),

respectively. However, the squaring loss, S~, of the loop becomes [3, Chapter 3]

K;
SL=

Kz+KL~
s

(40)

where K,, == 3/4 for second order loop, and K, , K2 and q are given by

4

K1 =1 -~[1 -e ‘4t~(cos(411)  -sin(4q))] (41)

of

ed

in

K2=l-~
32TI

(5 -[8qcos(4T)  +5(cos(4q) -sin(4q))]e “~)

‘q .!.
RS

S .  Nume]ical  wsu]ts

Using typical parameters for deep space missions, Figures 3

the phase jitter for the second order digital DAL (see Eq. (2))

loop filters described in Eqs (19) and (31). The approximated

13qs (19) and (31) were derived using LIT and IIT methods,

(42)

(43)

and 4 show the plots

using the approxin~at-

Ioop filters expressed

respectively. The

results obtained from the first order loop using linear approximation [2] are also

presented for comparison. Figure 3 shows that the tracking phase jitter (obtained us-

ing LIT transformation technique) remains almost constant as one switches the data



rate from 7,8125 bps to 500 bps (corresponding to

Note that 7.8125 bps and 500 bps are the typical

B~T~ = 0.1574 and BLT~ = 0.1566).

lower bound and upper bound,

respectively, for the deep space telecommancl  data rate. The results are confirmed

with the actual design and operation of the deep space spacecraft, e.g. Mars Observer

and Cassini. On the other hand, Figure 4 shows that the phase jitter of the actual

approximation does not remain constant as one switches the data rate. It is interesting

to observe that the phase jitter approximated by using the IIT for 50’0 bps (correspond-

ing to B~T~ = O. 1566) approaches that of the phase jitter obtained by using

first order approximation. While the phase jitter derived from the actual

the linear

transformation for

same as the phase

ure 5,)

7.8125 bps (corresponding to B1,T~ = O. 1566) is approximately the

jitter derived from LI-J method for the second order loop (see Fig-

The second order digital DA], shown in Figure 1 has been implemented using a

Signal processing Workstation (SPW) of Comdisco. Simulations have been run at

BI,Tb = 0.1566 and the simulation results are plotted in Figure 5 for comparison pur-

pose. This figure shows that the simulation results are in good agreement with the

analytical results derived by using 1.11” technique.

Using the phase jitter derived from the LIT method, the plot of BER performance

for communications system using DAL (see Eq, (33) and (34)) is shown in Figure 6.

The results for the first order loop is also illustrated in this figure for comparison

purpose. Figure 6 shows that the average IIER performance is nearly the same when



one switches the data rate from 7.8125 bps to 500 bps, In addition, this figure also

shows that the average BER performance for the first order loop is almost the same as

that of the second order loop. The BER degradation due to the ph

second order loop is about 0.1 dB for all

10-8.

Figure 7 compares the average 13ER

Costas loops. Performances of the Costas

practical cases of interest,

~se jitter for the

e., BER = 10”3-

performance between the digital DAL and

loop with second order Butterworth filter in

the arm filter and the Costas loop with matched filter and clock feed back in the arm

filter are shown in this figure, This figure clearly clemonstrates  the superiority

performance of the communications system employing digital DAL.

6. Conclusion

A thorough investigation of the second order digital suppressed-carrier DAL has

been presented in this paper. The mathematical models for the tracking phase jitter

and the 13ER performance have been derived from the analog, results presented in [1].

To characterize the behavior of the tracking phase jitter of the second order digital

DAL using available analog results, both IIT and LIT methods have been applied to

the approximations of the digital loop filter. The analytical results obtained from

these transformation techniques are then compared with the computer simulation

results. The comparison reveals that the results obtained by the LIT technique are in

good agreement with computer simulation results. In addition, the analytical results

also show that the tracking phase jitter remains almost constant when there exists a



small deviation in B~Tb. Note that a small deviation in B~T~ can occur when one

switches the data rate. Therefore, the analytical model employing the LIT method can

be used to predict the behavior of the tracking phase jitter of the second order digital

DAL for all data rates.

Using the derived tracking phase jitter, we can determine the BER performance of

the second order digital suppressed-carrier DAL. It has been found that, for typical

space applications, the BER degradation due to the tracking phase jitter for the second

order digital DAL is about 0.1 dB for 13ER = 10-3-10-8. Furthermore, it

shown that the digital DAI, outperforms the commonly used Costas loops

has been

such as

Costas  loop with second order loop filter in the arm filter or Costas  loop with matched

filter and clock feed back in the arm filter.

The numerical results presented in this paper are shown for

co~llllll]]licatiolls  sytems. However, the performance evaluation

typical deep space

technique proposed

here can easily be generalized to evaluate other communications systems that employ

digital DAL for their carrier (or subcarrier) tracking.
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